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PREFACE

In this Memorandum the authors present some

mathematical results conderning a competitive situation

arising in economic theory, using the techniques of the

theory of games. Game theory is important in its general

applicability to a variety of conflict situations-

economic, political, and military.

Dr. Shubik, of the International Business Machines

Corporation, is a consultant to the Mathematics Department.



SUMMARY

A model of a pure exchange economy is investigated

without the usual assumption of convex preference sets

for the participating traders. The concept of c=,

taken from the theory of games, is applied to show that

if there are sufficiently many participants, the economy

as a whole will possess a solution that is sociologically

stable-i.e., that cannot be upset by any coalition of

traders.
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THE CORE OF AN ECONOMY WITH NONCONVEX PREFERENCES

1. INTRODUCTION

In his study of bilateral monopoly, Edgeworth [8]

suggested as a fundamental solution concept the now well-

known contract curve, consisting of those Pareto-optimal

allocations that are at least as attractive to each

monopolist as the initial, "no-trade" position. He then

pointed out that if the number of traders on each side of

the market were increased, the contract curve would under

appropriate conditions shrink down to the set of competitive

allocations, which are the ones that can be derived from

the initial position by direct budgetary optimization by

the individual entrepreneurs, under a fixed schedule of

prices.

This shrinking of the contract curve as the size of

the market increases was based on the following consideration:

that no proposed allocation of goods would be finally

acceptable to the market if there were a subset of traders

who, by recontracting amongst themselves, could do uniformly

better. This principle corresponds quite well to the idea

of domination, which underlies two important solution

concepts in n-person cooperative game theory, namely, the

core and the von Neumann-Morgenstern solution. Indeed, if

IThe core of a game is the set of all undominated
outcomes. Tisolution is any set of outcomes, mutually
undominating, that collectively dominate all others. The
term "core" was introduced by Gillies and Shapley during
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the expanded Edgeworth model, with n producers and n

consumers, is regarded as a 2n-person game, the contract

curve, curtailed by the recontracting principle, is

precisely the core. The uncurtailed contract curve, on

the other hand, is a von Neumann--Morgenstern solution-

generally not the only one. In the case of bilateral

monopoly (n - 1), the core, the contract curve, and the

unique von Neumann-Morgenstern solution all coincide.

A number of refinements and extensions of Edgeworth's

convergence theorem have been obtained recently by Shubik

[18], Scarf [16], Debreu [6], Debreu and Scarf [7], and

Aumann [2], who exploit to a greater or lesser extent the

game-theoretic point of view. So far, the assumption has

always been made that the preferences of the individual

traders are convex, since it is well known that without

convexity there may be no competitive allocations. Recent

articles by Farrell [9], Rothenberg [15], Koopmans [12],

and Bator [5] have focussed new attention on the implications

of nonconvex preferences. With or without convexity, the

existence of a competitive allocation implies the existence

of a core, but the core may and often does exist even in

the absence of a competitive allocation. For example, a

a study of the properties of the von Neumann--Morgenstern
solutions; see [13], [10]. The core as an independent
solution concept was developed by Shapley in lectures at
Princeton University, in the fall of 1953.
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core always exists for bilateral monopoly. Thus, the

core is a more basic economic concept than the competitive

equilibrium.

Our object in this paper is to show that even when

the core itself does not exist, owing to nonconvexity of

preferences, it nevertheless lies "Just below the surface,"

with its location revealed by the presence of certain

quasi-cores. These are shown to exist whenever the number

of traders in the market is sufficiently large. In the

limit, they shrink down to the set of competitive allocations

of a "convexified" version of the original model. The

corresponding price schedules represent pseudo-equilibria

in the original model, at which the excess demand for each

good is either zero or else indeterminate in sign, meaning

that two sets of individual optimizations can be found

that create, respectively, a shortage and a surplus in

that good. Thus, a tatonnement, or other dynamic process,

that would converge to the competitive equilibrium if

preferences were convex, might be expected in the nonconvex

case to exhibit convergence in prices, even though no

feasible allocation might exist at the limit.

Generally speaking, our thesis is that nonconvexity

in the preference sets is of small consequence when the

number of individuals in the economy is large. This is

of course not a new observation, but we give it here a

mathematically precise expression in a fresh context.
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2. ON THE USE OF TRANSFERABLE UTILITIES

The mathematical results that we shall present are

to a certain extent illustrative rather than comprehensive,

since they rest upon two fairly drastic assumptions in an

otherwise general setting. This is primarily a matter of

technical convenience: the assumptions are indeed crucial

to our method, but not, we believe, to the essential idea

embodied in the results.

The first special assumption is that all individuals

in the economy have identical preferences, expressed by

means of a common, cardinal utility function. The second

-and more controversial-is that "utility" itself is

freely transferable between individuals. Some discussion

of this point is in order.

It has long been the fashion to formulate elementary

models of exchange on a barter basis. No Marshallian

"utility money," serving simultaneously as a measure of

value and a medium of exchange, is postulated. Individual

utility functions are often avoided entirely; when they

are admitted, they are only occasionally risk-linear, rarely

interpersonally comparable, and never transferable.2  Such

elementary barter-based models are relatively easy to think

about, and it must be conceded that the suppression of

2To be sure, money-like vehicles for side payments

can sometimes be discovered among the goods in exchange,
but the conditions imposed thereon-nonnegativity, strict
convexity, saturation, etc.-commonly prevent their use as
direct comparators and carriers of utility.
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money phenomena makes for technical simplicity and

lends an air of abstractness and generality to the

formulation.

A capsule rationalization of this approach might go

as follows: (a) money is not basic to the phenomenon of

exchange; (b) when it is found in actual markets, its

presence is due to external factors; (c) it brings in

many nonelementary complications (e.g., credit, interest,

currency backing) that respond better to separate analytical

treatment; (d) the money:utility relationship has obvious

and celebrated nonlinearities. Build a theory of barter

economics first, we are urged, and add money later along

with other refinements and elaborations.

When economic theory comes into contact with the

theory of games, which regards individuals as independent,

resourceful, sophisticated decision-makers rather than

elements in a mechanical (albeit "rational") process,

then the foregoing doctrine takes a curious turn.

Mathematical convenience, which may or may not be a

virtue in itself, is now distinctly on the side of trans-

ferable utility. "Utility money" smooths away many

bristling difficulties that arise when one attempts to

deal with a large number of uncoordinated centers of

independent strategic choice. With "unrestricted side

payments" (the game-theorist's term), the modeling

is simplified and many concepts are made clearer, though



-6-

a few may be obscured. Moreover, the technical analysis

is almost always easier, and the interpretation of the

solutions more direct and intuitive, than in the

corresponding nontransferable case.

Expediency, then, prompts us to retrace the argument,

to see whether a counterrationalization might not also be

possible. In this spirit, then, we might argue: (a) that

the impulse to compare and exchange utility is a deep-

seated expression of a fact of nature, inhering in the

market situation itself; (b) that when "utility money"

does not exist, rational individuals at once set about to

create it; (c) that in a situation where both goods and

information are already freely transferable, it would be

difficult in fact, and hence unrealistic in a model, to

prohibit the creation of a money substitute of some kind,

if the traders felt they had use for it. From this point

of view, the basic and most elementary models of exchange

would properly postulate a freely transferable utility.

Later refinements would then examine the effects of

various restrictions on transfer, or of anomalies in

the money:utility relationship. Pure barter might

perhaps be the least interesting, extreme case.

This sketchy discussion certainly does not pretend

to settle the question, nor do the authors regard themselves
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as committed wholly either to one philosophy or the other.

We merely wish to suggest to the reader that our present

hypothesis of transferable utility is not only expedient,

but methodologically respectable, and perhaps even

fundamentally superior to the opposite assumption.

3. AN EXAMPLE
3

A simple example, with n identical traders, will

serve to illustrate the existence problem for cores and

competitive equilibria as a function of n, and the r6le

played therein by homogeneity and transferability of

utility. The nonconvex preferences arise out of preferred

ratios in the consumption process, as shown in the

indifference map of Fig. 1.4  The numerical utility function

is assumed to be homogeneous of degree one:

(1) U(x) - max [min(2x I , x2 ), min(xI , 2x2 )].

There are thus two goods, say gin and tonic, and each

traders enters the market with a supply of one unit of each.

Each trader is indifferent as between weak drinks (1 to 2)

and strong drinks (2 to 1), but he will not take both, and

rejects intermediate (or more extreme) concoctions.

Utility will be nontransferable except where noted.

3This example was described briefly in [7].
4The polygonal form of the indifference curves is

inessential: the corners can be rounded off and the
straight edges bowed. Also, the "notch" can be made as
small as we please, by adjusting the coefficients in (1)
(compare (28) in Appendix 1).
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In looking for a competitive equilibrium, we first

observe that unequal prices will never work, since the

traders would all want to buy the cheaper good and sell

the other. Making utility transferable would do nothing

to relieve this imbalance.

With equal prices, however, a competitive allocation

can be reached, provided that n is even. In fact, each

man can exchange 1/3 units of one good for an equal amount

of the other, and end up with an efficient bundle--either

(4/3, 2/3) or (2/3, 4/3). The payoff is therefore 4/3

"utils" to everyone. Of course it may require cooperative

action, or a determined hostess, to settle who is to get

what drink!

If n is odd, on the other hand, no series of exchanges

(at equal prices) can possibly give everyone an efficient

ratio, and there is no competitive equilibrium. Rather,

we have a pseudo-equilibrium, where the excess demand for

either commodity (at equal prices) can be construed as

being either positive or negative, but not zero.

Transferable utility changes the picture somewhat.

In the even case, the competitive prices and payoffs still

exist, and are the same as before, but the allocative

possibilities are opened up. Because of the homogeneity

of (1), some of the traders may liquidate their holdings

for cash, provided that others spend an equal amount to increase

their comsumption. In the odd case, this same option works
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to circumvent the mismatching difficulty previously

experienced, and there is no longer any trouble reaching

a feasible competitive allocation. (For example, one man

can sell out completely, leaving an even number of traders

in the market.) The final payoff, as in the even case,

will be exactly 4/3 to each trader.

In passing, we may note that if there were diminishing

returns to scale in (1), then transferability would no

longer "save" the odd case. For example, we might introduce

a new utility equal to the square root of the old. Then

the equilibrium prices would be (it turns out) precisely

l/-VTT units of utility for each good. What is important

is not this number, but the fact that each trader would

have just two ways to optimize, neither one involving any

net utility payment. In this case, transferability is

irrelevant, and there is no competitive allocation.

What of the cores? When n - 2, the core (in the

utility space) is the bent line QPR, illustrated in Fig. 2.

It includes the competitive payoff P, and is included in

the set of Pareto-optimal payoffs SPT. If side payments

are permitted, the core is instead the straight line Q'R',

but it still contains P.

For larger values of n, the recontracting principle

takes over with a vengeance: the shrinkage is immediate

5In the commodity space, the contract "curve" is rather
spectacular. The reader can verify that it consists of four
triangular regions, arranged in a ring.
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and total. The cores actually contain no points other than

the competitive payoffs. That is, when n is odd and side

payments are not permitted, there is no core at all; in

all other cases the core is a single point. This drastic

curtailment of the core is rather atypical, and may be

ascribed to the extreme symmetry of the model.
6

These assertions about the cores are not entirely

trivial, and the proofs, which are given in Appendix 1

primarily for the sake of completeness, may also be of

interest to the reader unfamiliar with the techniques of

core analysis.

4. GAMES AND CORES

The characteristic function of a game ([20], [14]) is

designed to express the optimum result or results obtainable

by each coalition S of players, regardless of the actions

of the players outside S. In the transferable-utility
7

case, it is a real-valued set function v(S), arbitrary

except for the condition v(O) - 0 and for the property of

superadditivity:

6The present model provides no instances of cores
without competitive equilibria; such examples, however,
are easily constructed.

7Without transferable utility, the characteristic
function is set-valued, and can be defined in two ways:
v(S) represents either (a) the set of payoff vectors that
S can surely achieve, or (P) the set that S cannot be
preventing from achieving. The two parallel theories that
emerge are not generally equivalent because the minimax
theorem for coalitions is not valid in the absence of
transferable utility. (See Aumann and Peleg [4].)
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(2) v(S U T) v(S) + v(T), if S n T - O.

The outcome of the game is conveniently summarized in a

payoff vector, a, with components measured in utility

units; clearly, we must have

(3) Z a. K v(N),
N l-

where N denotes the set of all players. A payoff vector

is called an imputation it if satisfies two other

requirements:

(4) E ai v(N)

N

and

(5) a. > v([i)) for all i c N,

corresponding respectively to Pareto optimality and

individual rationality. These conditions can always be

met, because of (2). The more extensive requirement of

group rationality:

(6) E a. > v(S) for all S c N,
S -

which includes both (4) and (5), also suggests itself; the

set of payoff vectors thereby delimited, if any, is called

the core. Since (3) and (6) may well be inconsistent,

however, the core does not always exist.
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Speaking informally and intuitively, it would appear

that a coreless game might be more competitive and harder

to stabilize than one with a core. Indeed, in any game,

an observed outcome falling outside the core would seem

to admit of only two interpretations: (a) it is a transient

event in some dynamic process, or (b) it is evidence of a

social structure among the players that inhibits certain

coalitions from developing their full potential. An

observed outcome in the core, on the other hand, tells us

nothing at all about the organization of society; the core

is sociologically neutral [17].

The mathematical results in this paper depend on the

device of enlarging the core by a small amount. Two

related concepts will be needed. If e is a small positive

number, we define the strong 6--core as the set of payoff

vectors a satisfying

(7) E ai > v(S) - , for all S c N,

and the weak e--core as the set of payoff vectors satisfying

(8) E ai > v(S) - se, for all S c N,
S

where s denotes the number of elements of S. It is easy

to see that the following relations hold:

£

(9) weak e--core D strong c--core D weak ( --core = core,

n being the number of players in the game.



-14-

These quasi-cores are not just technical devices.

For example, they provide a way, if we want one, of

accounting for costs of coalition--forming in the solution

of the game. Under the weak definition, the costs would

be assumed proportional to the size of the coalition,

while in the strong case there would be a fixed charge.

Alternatively, we may regard the organization costs as

included already in the characteristic function, but view

the e or se as a threshold value, below which the

blocking maneuver implicit in (6) -the actual exercise

of "group rationality" -is not considered worth the

trouble.

5. THE MARKET MODEL

Let there be m different commodities and to

different types of traders, distinguished by the stocks

of goods they hold at the beginning of the trading session.

The initial endowment of a player of type "t" will be

denoted by a vector

at - )

If S is a set of players, and if st denotes the number

of players in S of type "t", then the aggregate initial

endowment of S may be written as follows:

to

a =)-1 stat-i
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where -4 is an abbreviation for the integer vector

(sli,...,st ) and is called the profile of S. The total

supply of goods in the game is then a(l), where 7L is the

profile of the set N of all players.

At the conclusion of trading, the players hold bundles

xi , which must account for the total quantities initially

present in the market. Thus we have

(9) xiE EP , and E xi - a(M),N
m

where E+ denotes the closed positive orthant of cartesian

m-space. Subject to these constraints, all final allocations

are assumed possible. In particular, the outcome need not

be symmetric as between players of the same type. In

addition, there may be direct transfers of utility among

the players. Thus, if U is the common utility measure,

the possible final payoffs will take the form

a i - U(xi) - T'i ' all i e Is

subject to (9) and ENri - 0.

By symmetry, the characteristic function depends only

on the profile of a coalition. Since internal utility

transfers will cancel, we have
all yE

sE+ ,
(10) VU(. ) - sup E U(yV), subject to V

y V V- 1 E y a (A),
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where s denotes the sum of the st• Players outside the

coalition do not affect this value, since they can neither

force nor be forced into dealings with the coalition

members. 
8

Let rU(n) designate the game we have just defined.

The subscript "U" will serve to distinguish it from an

auxilliary game we shall introduce in the next section.

An allocation [x i satisfying (9) is called competitive

if there exists a price vector p = (Pl'".'Pm ) such that,for

each individual i c N,the bundle x maximizes the expression:

(11) U(xi ) - p. (xi- ai).

The prices p are called equilibrium prices. (This differs

from the ordinary definition, which includes the budget

constraints: p (xi - ai ) = 0. The modification is of course

due to the presence of transferable utility.)

Let a* denote the maximum of (11), for a given

equilibrium price vector. Then it is easy to show that

the vector aip which we shall refer to as a competitive

imputation, is in the core of the game rU(7). Indeed, we

have

8
Hence, questions regarding the proper evaluation of

"threats" in the characteristic function do not arise in
this game.
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Ea* U(x vu
N N

verifying the feasibility requirement (3). To verify the

core inequalities (6), we fix S C N and e > 0, and, using

(10), find bundles y i e such that

Z U(yi) VU(4)) - and E yi . a(4)).
S S

Since a maximizes, we have

i-U(y) -p " (yi _ ai) for each i e S.

Summing, we obtain

E a U(yi) vu(A) -
S S

Since this is valid for arbitrarily small e, (6) follows,

and we have established the following result:

Theorem 1. Every competitive imputation is in the

core.

We remark that this result does not depend on our use

of identical utility functions for the players, nor have

we imposed any regularity requirement on U, apart from the

assumption that the game is well defined.
9

9Specifically, U(x? must be locally bounded from
above in order for the "sup" in (10) to be finite.
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6. "CONCAVIFICATION" OF THE UTILITY FUNCTION

Initially we shall impose almost no conditions on the

function U(x). It need not be concave, continuous, or

monotonic, and it may either be bounded or unbounded. We

do require that its asymptotic growth in Em be no more

than linear, and that it be bounded from below on all

compact subsets of Em • In other words, we assume the

existence of a linear function L0 and a continuous function

K0 such that the inequalities

(12) K0(x) K U(x) _ L0 (x)

hold for all x in the commodity space E+ •
m

Let us now define a function C on E+ as follows:

m+l Xh - 0, E'h - 1,
(13) C(x) - sup h hU(yh), subject to

Y Ch E+ , EXhyh -x.

The finiteness of this "sup" is ensured by (12). The

function C is concave, it majorizes U, and it is the least
10

such function. We may remark that C is continuous at every

interior point x of E+ and possesses a linear support there,

i.e., a linear function L such that L > C and L(x) - x.

If the "sup" (13) is actually achieved for all x, we shall

say that C is spannable by U (see Sec. 8 below).

10The use of m + 1 spanning points is sufficient to
"concavify" any linearly bounded function on e. Replacing
"m + 1" in (13) by a larger number would not affect the
value of C(x).
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We intend to use C as an artificial utility function

in defining a concave majorant game rC(71), identical in

every other respect to the game rU(IL) previously defined. 11

The characteristic function vC has a simple explicit form.

Since players have identical, concave utilities, a coalition

achieves maximum profit by dividing its total endowment

equally among its members, and we have

(14) vC(,W) - sc(a )

Thus, vC(.&), like a(.&), is homogeneous of degree one, i.e.,

(15) vc(k4A) - kvc(4&), k - 0, 1, 2,...,

indicating constant returns to scale in the artificial game

to a uniformly expanding coalition. For the true game,

on the other hand, we know only that

(16) vU(k4') l kvu(.4), k - 0, 1, 2,...

--a consequence of superadditivity (2). Our results on

the existence of -cores will hinge on showing that vu(-4')

is nevertheless "almost" homogeneous, in a sense to be

described.

7. EXISTENCE OF THE WEAK c--CORE

Theorem 2. For every profile 7L - (nl,...,nt0 ), and

for every e > 0, there exists a constant k0 such that every

11Concave utilities, of course, imply convex preference
sets.
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game ru(k t) with k > k0 possesses a weak --core.

Lemma. (weak E--homogeneity of VU). For every profile

1 and for every e > 0, there exists a constant kO- ko(,',c)

such that

(17) v vu(k,&) < vC(41)

holds for all k > k0.

Proof. Fix.& and C, and let x*- a(d)/s. Then, by

(14),

VC() - sC(x*).
* yh

Using (13), find a convex representation x - EXhy such

that

m+l h
(18) C(x ) EI Xhu(Y ) + '2.

=h-

Let th denote the greatest integer in ks~h, h - l,...,m+l.

Then

(19) E thyh _ ks EXhyh- ksx* - a(kA.').

Thus, in a coalition with profile kA/, it is possible to

assign the bundle y1 to the first ti players, y2 to the

next t2 players, and so on. If "<" holds in (19), there

will be goods left over after this allotment, but there

will also be at least one player left over,too. Allotting

the excess goods equally among the extra players gives
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them each an allocation y* that lies within the convex

hull of the (yh). Since there are at most m extra players,

we can write down an upper bound for the amount that the

allotment of the excess might deduct from the total coalition

utility, namely:

b - m *Imin K0(y*)I, subject to y* e convex hull of [y h.
y*

(This is the only use of the function K0 postulated in (12).)

The important fact about this bound is that it is independent

of k.

We have thus described a feasible allocation, whose

value to the coalition is at least E ChU(Yh ) - b. Thus

vU(k4) > FthU(y) - b.

Applying (18), we obtain

vu(k.&) > ks EXhU(y h) + E(th- ksh)U(yh ) - b

> ks C(x*) - k + E(,h- ks )U(yh) - b
k¢ - Euhh) -

- kvc( ) ke k

where

k (EIU(yh)I+ b) > 0.

Then k > k0 implies that

vu(k,&) > kvc(4) - ke
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giving us one side of (17). The other side is a

consequence of (15) and the general inequality vU < vc .

This completes the proof of the lemma.

Proof of Theorem 2. Let a be the payoff vector

associated with a competitive allocation of the "artificial,"

concave game FC(n ). Then a is in the core of that game

(Theorem 1). Moreover, for every k, the k-fold replication

of a is the payoff vector of a competitive allocation of

the game c(kl), and lies in its core. Denote this k-fold

replication (a vector with kn components) by ak. We shall

now construct a nearby imputation of the original game

ru(kn). Denote the difference vc(kZ) - vu(k7Z) by g;

clearly g > 0. Choose an arbitrary n-vector y whose

components sum to g/k and satisfy

0 yi a - Vu(-Z ) '

where A denotes the profile of the 1-player set i). This

is possible because of the two inequalities:

g/k vC(7L) - vu(') Ei(ai v - )),

and

0 Vc(') - vu(A) a i - VU( ).

(The first follows from (15), (16), (4) applied to r C(),

and the superadditivity of vu; the second is a consequence
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of (5) applied to rC(n).) Let yk be the k-fold replication

of y, and define

(20) kk . k_ yk.

This is the desired imputation of ru(kL). We wish to

show that it lies in the weak C--core, in the sense of (8),

whenever k is greater than the constant k0 - k0(7 , C)

provided by the lemma.

Consider, thereforean arbitrary subset S of the set

of all kn players. Note first that

(21) : ak > v ( > VU

SI - C

since ak is in the core of rC(k n) and C > U. Also we

have

(22) E y. <Ks sv- - s U kI): e

since each yi < g/k and k > k0 (fl, c). Combining (20),

(21), and (22) now gives the desired result:

(23) E P > vuJ(4 -s.

This completes the proof of Theorem 2.

We may observe that y - 0 as C - 0, so that the weak

C--cores can be said in a certain sense to possess a limit

point---namely, the imputation a replicated an infinite

number of times. Let us state this more precisely. Given

any competitive payoff a of the concave game rC(L), and
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any 6 > 0, then for all sufficiently small c > 0 there

is an n-vector at a distance less than 6 from a whose

k--fold replication is in the weak --core of the game

r u (k ),for all k > k0 ( n, e). It further appears, in

analogy with the results of Debreu and Scarf [7], that

the above does not hold for a not a competitive payoff

of rC (a); we believe, in other words, that the weak

c--cores converge (in the sense above) to exactly the set

of competitive payoffs of the "concavified" game.

8. FURTHER CONDITIONS ON U; DISCUSSION OF AN EXAMPLE

The extremely weak conditions that we have so far

imposed upon the utility function (see Sec. 6) will need

reinforcement before a result analogous to Theorem 2 can

be obtained for strong c--cores; we shall require the

"spannability" of C (see Sec. 6) and a certain amount of

differentiability for U. Our primary purpose, of course,

is the study of the effects of nonconcavity in U, not the

wholesale abandonment of regularity assumptions of all

kinds. Our policy of keeping the hypotheses as general

as possible serves a secondary function, by making clear

precisely what our results do and do not depend upon.

We shall postulate, then, that U is radially

differentiable, and has a spannable concave majorant.

The first assumption means that U is differentiable along
m 12

all rays in E+ emanating from the origin. This is

12 Actually, we shall use the radial derivatives only
at points where U and C are equal.
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considerably weaker (if m > 1) than assuming the existence
of first partial derivatives aU/ax i . We do not demand

that the radial derivatives be continuous, or, indeed,

that U itself be continuous.

The second assumption means that there exists a

concave function C > U such that for each xeEE, there
hm

are m+l (or fewer) points y he E+ and weights Xh > 0

such that

Z h i hh h h
E %h E , h = x, and E %hU(y) C(x).

This clearly implies that U is bounded above by a linear

function, as previously assumed (right side of (12)).

The matching assumption that U is bounded below by a

continuous function (left side of (12)) is not implied,

and is not needed.

Since the notion of spannability, which may be an

unfamiliar one to many readers, is evidently quite

fundamental to any investigation of the relaxation of

convexity conditions, a short digression is now in order,

to link this notion to other analytic conditions and to

explicate its r~le in our present work. Accordingly, in

Theorem 3 and the remarks following, we shall indicate

some sufficient conditions for spannability, and then

work through a simple group of examples.

Let U be called sublinear if for every linear function

L with positive coefficients, the difference U-L has an
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upper bound. For example, logarithmic (Bernoullian)

utility is sublinear; also, any bounded utility function

is sublinear.

Theorem 3. If U is continuous, sublinear, and

strictly increasing, then U has a spannable concave

majorant C.

From the proof (given in Appendix 2) it will be seen

that "strictly increasing" is hardly necessary here; a

certain very weak insatiability condition would suffice

instead, namely: for each x e Em and each j -

there is a y c+ differing from x only in the j-th

component such that yj > xj and U(y) > U(x). In addition

we may remark that if U has a spannable concave majorant,

then so does U + L, for any linear function L, despite

the fact that the addition of L may destroy both

sublinearity and monotonicity (or insatiability).

Let us now consider a very simple example, having

just one commodity and one type of player, in order to

show how spannability and differentiability are crucial

to the existence of strong e-cores in the limit. Let

U(x) - [x/2], i.e., the greatest integer less than or

equal to x/2, and let all the initial endowments be 1

unit. Here C(x) a x/2, and is spannable, but U is not

differentiable. (See Fig. 3a.) For a coalition with

s members we have
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vu(s) - [s/2] and vC(s) - sf2.

If the game happens to have an odd number of players, say

n - 2r + 1, then in any Pareto-optimal payoff vector,

the most-favored player receives at least r/n units. The

2r least-favored players therefore receive at most

r - r/n. This must be compared with the amount r that

they can obtain in coalition. The difference, r/n,

converges not to 0, but to 1/2 as r - -. Hence strong

--cores do not exist for large, odd n and small e.

Now let us change U to destroy the spannability of

C, at the same time making U differentiable (Fig. 3b).13

One can then verify that

(24) vu(S) = U(s) - [-], s - 1, 2,...

In other words, a coalition can do no better than allot
14

all its goods to one player. If there happens to be an

even number of players in the game, say n - 2r, then the

least-favored set of n-l players will always get (r-l) - (r-l)/n

or less, compared with the amount r-1 they can obtain in

coalition. Again, the difference goes to 1/2 as r - a,

13The precise form of the curved parts of U within
the small squares is immaterial.

141f the coalition allots in integer units, U might

as well be the lower step-function in the figure (dotted
lines). If fractional shares are used, the result can be
no better than discarding one unit and then using the
upper step-function. In either case the value (24) is
best possible.
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and strong e-cores do not exist for large r and small e.

Finally, let us restore spannability, as in Fig. 3c,

taking care to make U differentiable at the points of

contact with C. A coalition with n = 2r + 1 members

will now be able to allot 2 + 1/r units to r of its

members and nothing to the other r+l members, receiving

a total utility of r(l + 1/2r - 0(1/r2)). Thus we have

VU (n) - n/2 - 0(1/n)

-valid for even as well as odd n. In an n-person game,

then, the imputation that gives an equal amount to each

player assigns to every s-player set an amount

(s/n)vU(n) - s/2 - 0(1/n) ,

compared with at most s/2 that they can obtain in coalition.

In this case the difference does go to zero, and we have

strong c--cores in the limit as n - m, for arbitrarily

small e.

9. EXISTENCE OF THE STRONG c--CORE

Theorem 4. If U is radially differentiable and

has a spannable concave majorant C, then for every profile

-?L and for every e > 0, there is a constant k0 such that

every game Fu(k7l) with k k0 has a strong c-core.

Lemma. For every profile w and for every c > 0

there exists a constant k0 such that
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(25) vc) = IE _ U (k -4) _4v (-4)

holds for all k > k0 .

Proof. Fix W and C, and let x* - a(i')/s. Then

(26) Vc( ) - sC(x*).

Using the spannability of C, find a convex representation

x* - r Xhyh  such that

C(X*) - ExhU(y h).

Given k, we wish to "move" the points yh slightly, to

make the coefficients Xh integer multiples of 1/ks. The

technical details of this maneuver have been relegated

to Appendix 3; the result is a new convex representation

x*- Eh z  for each k, with the property that for each

h, ks h is an integer, and

(27) ksIU(zh ) - L*(z)l - 0 as k -

where L* is the linear function tangent to C at x*. We

therefore have

vu(kN ) > E. kSthU(zh),

since the ks h are integers with sum ks. Using (27), we

have for sufficiently large k
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vu(kAJ) > ksEhL*(zh) - €.

The right side is equal to ksL*(x*) - C, by linearity.

This in turn is equal to ksC(x*) - c. Applying (26) gives

the desired result:

vu(k,&) > kvC(') - .

The other inequality in (25) is immediate, by (15). This

completes the proof of the lemma.

The proof of Theorem 4 proceeds exactly like that of

Theorem 2 in Sec. 7, but uses the more powerful lemma

that we have established. Note that in order to ensure that the

constructed imputation Pk is in the strong c--core,we

must use "/n" for "e" in applying the lemma. The last

line of the proof (compare (23) in Sec. 7) then reads as

follows:

E P k > Vu() SE> Vu(W) C C.

The remarks at the end of Sec. 7 concerning the

limiting behavior of weak c--cores apply equally to the

present case.

10. CONCLUSION

The core is a more general economic concept than the

competitive allocation, in that it is possible to have

markets with a core but no competitive equilibrium, but
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not vice versa. This can happen whether the absence of

a competitive equilibrium is due to nonconvex preferences

or to other factors not considered in this paper, such

as nonconvex production sets or external production

economies. Although no pure price mechanism will clear

the market, there may nevertheless exist an imputation of

wealth--a core payoff-that is stable against both individual

and joint action by the participants. Achieving this

imputation may involve taxes, transfer payments, or

multiple prices.

There are also cases of interest where the core itself

may be vacuous. This means, in terms of Edgeworth's

mechanism, that there will always be a group wishing to

recontract. To resolve the inherent instability of this

situation, we must resort to introducing social, cultural,

or institutional restraints. The theory of games offers

several solution concepts that provide frameworks for the

systematic introduction of these factors; among the more

useful are the von Neumann-Morgenstern "solutions" [20],

the Luce "*-stable pairs" [14], and the Aumann-Maschler

"bargaining sets" [3].

Another tool that seems promising in this connection

is the quasi-core concept employed in the present paper.

It can easily be shown that e-cores (both weak and strong)

always exist if e is large enough. The sociological

factor involved here can be interpreted as an organizational
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cost prerequisite to cooperative action, proportional to

the parameter e. Theorems 2 and 4 of this paper indicate

that even if c is small, the quasi--cores will exist when

the market is large enough. Of course, when e-cores exist

for small values of e, it is not unlikely that the core

itself exists as well, making the market fully stable

against recontracting. But even without a true core, the

profit to be gained from recontracting out of an c-core

would be small, and a near-stability can be achieved.

By passing to the limit with these quasi--cores, or

by direct concavification of the finite model, one can

define a price structure that takes the place of the

missing competitive equilibrium. These pseudo-equilibria

might repay further study. Perhaps (for example) one

could find cases where they serve as the limit points of

t~tonnement processes ([19]), in the absence of true

equilibria.
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Appendix 1

DETERMINATION OF CORES IN THE EXAMPLE OF SECTION 3

Generalizing (1), let the utility function be given

by

(28) U(x) - max[min(ax I, x2), min(x I, ax2)],

where a > 1. Let A - 2a/(l + a), and note that a > A > 1.

Suppose first that side payments are permitted. Then it is

easily verified that any set of s players, 2 s n,

can achieve a combined payoff of sA, and no more. Thus,

the payoff vector P that assigns A to each player is

undominated, and lies in the core. Any other payoff vector

will assign less than (n-l)A to the n-l least-favored players;

hence, if n 3, that set of players can block it. Thus

the core consists of the single point P. When n - 2,

however, blocking only occurs if one player is assigned

less than 1, or if the two together get less than 2A.

Thus, the core is the line segment joining the points

(1, 2A-1) and (2A-1, 1) (Q' and R' in Fig. 2).

Next, let side payments be prohibited, and let

be an undominated payoff vector. We may

assume that

(29) al a 2 "' %n
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Now, the coalition (1,2) can divide its assets as follows:

(t, t/a) to 1, (2-t, 2-t/a) to 2,

and thereby achieve the payoffs P1 - t, P2 - 2 - t/a

for any t between 0 and A (i.e., any point on the

line from S to P in Fig. 2). To avoid domination of

a by such P, we must have

(30) a1 , 2a- a 2 .

Combined with (29), this entails

2a

(31) a2  a+1 - A.

We also have, of course,

(32) a1  1.

Let (xi, x2 )] be an allocation that yields a. Let p be

the number of indices i > 1 such that xi x2, and let
1 2

q = n- 1 - p. We note from (28) that xi i x2i implies

that a1 - min(ax1 , x2 ), and that xi > xi implies that
I iai - min(x1 , ax2 ). Hence

n

Px 2 /a +qa 2  E 1 n -xi,
2

by (29). Hence

1 1< n - (p/a + q) a=2 - B1 .
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Similarly

x n - (p + q/a) a2 - B2 .

Without loss of generality, we can assume that p k q.

Then B1 Z B2, and we have

(33) a1  min(BI, aB2).

Case i. Suppose p - q. Then n - 2p + 1, and

(34) 1 a , B1 - (2 p + 1)-p(l+ l)- 2  (by (32) and (33))

2 + l-p a +  A (by (31))
p a

-1.

Hence there is equality throughout (34), and al - 1 and

a2 " A. But this violates (30). Hence we cannot have

p -q.

Case ii. Suppose p q + 2. Then

1 < a <aB 2 - (p + q + l)a - (pa + q)a2  (by (32) and (33))

a + p(a - aA) + q(a - A) (by (31))

a + p(a - aA) + (p - 2)(a - A) - 2A - a

- - a- 1) i.a+ 1
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Hence we cannot have p q + 2. There remains...

Case iii. Suppose p - q + 1. Then n -
2p, and

we have

2a - aa2  a, aB2 - 2pa - (pa + p -1)a 2,

from (30) and (33). Hence

(35) (p - 1)(a + 1)a 2  2(p-1)a.

Now if p > 1, this gives a2  A; hence, by (31), a2 = A,

and we have equality in (35). But in deriving (35) we made

essential use of (30) and most of (29); therefore, equality

must prevail in these places as well, and we find that all

the ai are equal to A. In other words, the only possible

candidate for the core is the vector a - (A,A,...,A). It

is easily verified that this vector is in fact a feasible

payoff, and is undominated; hence we have a one-point core

as claimed. Note that n in this case is even.

If p - l(i.e., n - 2), then (35) is no restriction,

and it is easy to show that the core consists of the broken

line from (1, 2 - -1) to (A. A) to (2 - I , 1) (QPR in Fig. 2).
a a
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Appendix 2

PROOF OF THEOREM 3

Define C as in (13), take x* interior to EP , and

let L be a linear support to C at x*. Then L is

strictly increasing in each xj, and so is L/2. By

sublinearity, we can find a function L' parallel to L/2

such that L' > U + c, where c is a preassigned positive

constant. Let R denote the region of Em in which

L < L'; clearly R is compact and contains x*. We now

wish to consider convex representations of x* that "almost"

achieve the value C(x*), in the sense of the "sup" in (13).

In order to distinguish between vertices lying within R

and those outside, the representations will be written in

the following way:

(36) x* - ay +3Z - a E %hyh + Pkzk P yhe R, zki R.

Here F denotes 1 - a, and is understood to be 0 if there

are not points of the second type in the representation,

i.e., if z is not well-defined. (Note that y is always

well--defined; this follows from the fact that x is outside

the convex set E+- R.) Given c > 0, by (13) we can find

a representation satisfying

aE (h kh YhU(Y) + a EtkU(z ) > C(x*) - C.

Hence we have
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cL(y) + FL' (z) - 6c > L(x*) -

or, from (36) and the linearity of L,

S> I [L(z) - L'(z) + c].

Since [L(z) - L'(z) + c] > c > 0 for z e Em- R, we see

that

a-0 as -0.

But since L' and L/2 are parallel, the expression in

brackets is of the form L'(z) + c', with a new constant c'

Thus, even though lizil may be unbounded, we nevertheless

have

UIzl - 0 and L'(z) -0, as c - 0.

Hence,

y " (z* -Ez) x*, as c - 0,

and

-hU(Y) > a. [C(x*) - e -'a E4 kU(z)]
1

> [C(x*) - e -d L'(z)]

- C(x*).

Since the yh are restricted to the compact region R and

since U is assumed to be continuous, there exists a

limiting representation x* - Ehyh with ErhU(y h) - C(x*).
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Hence C is spannable by U at the arbitrary interior

point x*.

If x* is not interior to Em this argument is

not directly valid, since no linear support L need exist.

But we can then reduce the dimension of the problem,

without affecting either the definition of C(x*) or the

hypotheses of continuity, sublinearity, and strict

monotonicity. In the reduced problem, x* will be

interior.
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Appendix 3

PROOF OF (27) IN SECTION 9

Lemma. Let L* be a support to C at x*. Let

there be a convex representation x* = E hyh such that

EXhU(Yh) - C(x*). Assume that U possesses a radial

hderivative at each y . Let s be a fixed integer and

k a variable integer. Then there exist convex repre-

sentations x* - Ephz , depending on k, such that for

each h, ks h  is an integer and

(37) ksIU(zh) - L*(zh)l - O,as k -.

Proof. Assume first that all Xh are positive. For

any k, we can find nonnegative integers th with sum

ks and such that Ikskh - Ihl < 1. Now define:

hm -h/ks and zh . Xh yh.

For k sufficiently large, the' ph will be positive,

and all the statements in the lemma are obviously

satisfied, except for (37). To verify the latter, note
hh

that L* is tangent to U at each y , and that z

h h happroaches y along the ray Oyh . (If y _ 0 and

there is no ray then (37) is trivial.) Since the

derivative of U at yh exists along that ray, we have

IL*(zh) - U(zh) I- O,as k -
z h - yh l
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(We are concerned, of course, only with values of k for

which zh + yh.) But, for large k,

ilzh - " [Xh - h h

1/ks

Hence ks 1zh - yhlj goes to zero, and (37) (which is the

same as (27)) follows.

If some of the Xh are zero, we can set the

corresponding 4h - 0 and zh - yh , and proceed as above,

with h restricted to the indices for which Xh is

positive.
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